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The relation of simultaneous verifiability (compatibility) of yes-no measure- 
ments, introduced by G. W. Mackey for the purposes of quantum axiomatics, 
is investigated. The meaning of this important relation is clarified here by 
showing its position among all the so-called weak compatibilities defined 
axiomatically in the logic of propositions. 

1. PRELIMINARIES, DEFINITIONS, AND NOTATION 

There are three basic concepts at the foundations of any physical theory: 
states, observables, and yes-no measurements (called also propositions, 
questions, events), i.e., measurements that can give only two results, yes or no. 
A common belief of physicists is that every measurement of a physical 
quantity can be reduced to a series of yes-no measurements, and thus we may 
expect the structure of the set of all observables to be completely determined 
by the structure of the set of all yes-no measurements. This is indeed so 
[see, e.g., Mackey (1963)], and therefore the structure of the set of propositions 
(which we call the logic of a physical system; briefly, a logic) is of primary 
importance. 

The logic of any classical system is found to be the Boolean lattice of all 
Borel subsets of the phase space of the system, while for a quantum mechanical 
system its logic is the complete ortholattice of all closed subspaces of a 
(separable complex) Hilbert space corresponding to the system. 

For an abstract logic L of a general physical system (without considering 
it concretely represented) the following properties are assumed to hold 
(Mackey, 1963): 

(L1) L is a a-orthoposet, that is, a a-orthocomplete orthocomplemented 
partially ordered set. 
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(L2) L is orthomodular, i.e., a ~< b (a, b E L) implies b = a v c for some 
c ~ L, c _L a. (We write c A_ a and say that propositions c and a are orthogonal, 
if  c ~< a '  or, equivalently, a ~< c', where the prime denotes orthocomplemen- 
tation in L. This orthogonality relation is obviously symmetric). 

Having the logic L fixed, we can identify the states of  the physical system 
with probability measures on L and the observables with g-homomorphisms 
from the Borel subsets of  the real line R t into L [see, e.g., Mackey (1963)]. 

2. A C H A R A C T E R I Z A T I O N  OF T H E  S I M U L T A N E O U S  
VERIFIABILITY OF P R O P O S I T I O N S  

Usually the most important  manifestation of the quantum nature of  
microphenomena is considered the existence of such observables, which do 
not admit a simultaneous measurement with an arbitrary accuracy. I t  can be 
shown that this is exactly equivalent to the existence of propositions that  are 
not simultaneously verifiable [for a precise proof, see Varadarajan (1962)], 
where, by definition, propositions a, b e L  are said to be simultaneously 
verifiable [or compatible, a~-+ b in symbols (Mackey, 1963)] if there exist 
three pairwise orthogonal propositions al, bl, and c such that a = al v e and 
b = b~ v c. This relation is obviously symmetric and reflexive. The phenom- 
enological meaning of the so-defined relation ~-~ is not clear, but it can easily 
be understood if we notice the following (Varadarajan, 1962): 

a +-+ b iff there exist an observable x: B(R ~) --~ L and Borel sets 

E, F ~ B(R ~) such that a = x(E)  and b = x(F) 

Hence, as a direct consequence, we obtain 

a ~ b implies a ~ b' 

The following statement may help clarify the significance of the relation 
[for its proof, see, e.g., Varadarajan (1962)] : 

a +-+ b (a, b ~ L) iff there exists a Boolean sublogic of  L containing 
both a and b. 

The following statements can be shown (Varadarajan, 1962): 
(1) Let a, b ~ L and a +-+ b, that is 

a = a ~  V c and b = b t  v e 

where al, bl, and c are pairwise orthogonal. Then there exist a v b and 
a A  b, a n d a A  b =  e. 

(2) Let a, a~, az . . . .  eL .  Ifa+-+ai for all i = 1, 2 . . . .  a n d i f V ~ = l  a~and 
V~= ~ (a A a~) both exist, then a ~ V~= ~ a~ and 

a A a~ = (a A a~) 
i = l  
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The following properties of  the relation ~ are of  particular importance 
to us (Varadarajan, 1962): 

(a) ~ is symmetric and reflexive. 
(b) a ~-~ b implies a ~ b'. 
(c) a ~< b implies a ,-+ b. 
(d) a~-~b,a+-+c, b Leimplya,~-~b V c. 

Note that  (c) is a direct consequence of the orthomodularity of  L, and (d) 
follows from (2). 

Definition. Every binary relation C _ L x L satisfying the preceding 
conditions, i.e., such that  

(i) C is symmetric and reflexive, 
(ii) a C b implies a C b', 

(iii) a ~< b implies a C b, 
(iv) a C b, a C c, b _1_ c imply a C b v c, 

will be called the weak compatibility in L. 
The justification for such a name for C is contained in the following 

statement. 
Theorem 1. The relation ~-+ is the strongest one in the family of  all 
relations C with properties (i)-(iv), that is 

a +-~ b implies a C b 

In other words, ~ ___ C for any relation C satisfying the conditions 
(i)-0v). 

Proof Suppose that a ~ b (a, b c L). Then a = al v c and b = bl v c, 
where al, bl, and c are mutually orthogonal. Hence bl _L a~ v c = a, and 
so b~ C a by (iii) and (ii). But c ~< a implies c C a by (iii), and therefore by 
(iv) and (i) one finds a C b~ v c = b. This proves that ~ ___ C indeed. 

Corollary. Let ~ denote the family of all weak compatibilities in L. 
Then 

*--, = ("] C 
cecg 

Definition. I f  the weak compatibility C ~ L • L has the additional 
property 

a C b => there exists a v b in L 

(or the equivalent dual property a C b =~ there exists a A b in L), and if instead 
of  (iv) the relation C satisfies the stronger condition 

(iv') a C b ,  a C c ,  b C c = ~ a C b v  c a n d a A  ( b v  c ) = ( a A  b) v ( aA  c) 
or the equivalent dual condition, then we shall say that C is regular. 

I t  is well known (Pool, 1963; Ramsay, 1966) that not every logic admits 
a regular weak compatibility on it. On the other hand, in any lattice logic the 
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relation ~ is regular. This follows easily from (1) and (2). So the existence of  
a regular weak compatibility in the logic L may be considered a "regularity" 
condition for L, and thus the following definition can be accepted. 

Definition. The logic L is said to be regular if a regular weak compatibility 
may be defined in L. 

Theorem 2. If  a weak compatibility C _ L x L is regular, then 
C = +-+. Thus there exists at most one regular weak compatibility 
inL.  

The proof  of  this theorem is preceded by two lemmas. 

Lemma 1. Let C be a regular weak compatibility in L, and let M be 
a nonempty subset of L. Then M is a Boolean lattice, whenever the 
following conditions are satisfied: 

(a) For  any pair a, b e M one has a C b and a v b e M. 
(b) a e M implies a' e M. 

Proof. From (a) and (b) it follows readily that a A b e M for all a, b ~ M 
and that 0 and 1 are in M. Thus M becomes an orthocomplemented lattice, 
and it remains to be shown that M is distributive. But the distributivity of M 
is guaranteed by the property (iv') of the relation C. Indeed, owing to (a) and 
(iv') we have a A (b V c) = (a A b) V (a A c) for all a, b, c e M, which, by 
(b), implies the dual identity a v (b A c) = (a v b) A (a V e), all a, b, e e M. 

Lemma 2. Let C be a regular weak compatibility in the logic L. Then 
every subset of L consisting of pairwise weakly compatible proposi- 
tions is contained in some Boolean sublattice of L. 

Proof. Consider the family d of all subsets A _ L consisting of  mutually 
weakly compatible elements of L (that is, such subsets A _c L for which a C b 
for any pair a, b E A), partially ordered by the set inclusion. If  {At}t~r is an 
arbitrary chain of elements from d ,  then obviously Ut~r At belongs also to d .  
Of course, [,.)t~r At is an upper bound for the chain {At}t~r; hence by Zorn's 
lemma every subset A e d is contained in some maximal set M e d for which 

(i) a C b for all a, b e M (since M E d ) .  
(ii) a E M implies a' e M (by the maximality of M). 

(iii) a v b e M for all a, b e M (by the maximality of  M and the regularity 
of C). 

All conditions of  Lemma I are satisfied, and hence M is a Boolean sublattice 
of L. 

The proof  of the theorem is now immediate: a C b implies a, b e M for 
some Boolean sublattice M _ L by Lemma 2; hence [see, e.g., Varadarajan 
(1962)] a ~ b. We thus have shown that C _ <--% which together with the 
inverse inclusion proved in Theorem 1 leads to C = <-% as claimed. 
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Thus the regularity of an arbitrary weak compatibility" C g L x L 
implies the regularity of  the relation +-~. 

Note, by the way, the following fact: 

Theorem 3. The relation ~ is regular if and only if it satisfies the 
first part of condition (iv'), that is, if  the following property holds 
f o r  +-+" 

(*) For  any triple a, b, c of  mutually compatible propositions 
one has a +-+ b v c. 

Proof. One needs to show only the " i f "  part of the theorem. Suppose thus 
that condition (.)  is satisfied by +-+. Hence, by the condition dual to ( .)  [which 
is, of  course, equivalent to (*)], we get 

a+-+b,a+-+c,b~-~c ~ c+-+a A b 
Hence 

a A  b~--~aA c 

since a /x b ~< a leads to a A b ~ a [see, e.g., Guz (1971)], and therefore we 
conclude [see (1)] that there exists (a A b) v (a A c). 

Since a ~ b v c by (*), there exists, by (1), a A (b V c). It now remains 
to appeal to (2) in order to find that 

a ^  (b v e) = (a ^ b) v ( aA e) 

which is the second part of condition (iv'). The proof  of the theorem is thus 
complete. 

A direct consequence of Theorem 3 is the following result. 

Corollary. The logic L is regular if and only if the compatibility 
relation possesses the property (.)  or the equivalent property dual 
to  (,). 

Examples, which have been found by Pool (1963) and independently by 
Ramsay (1966), show that there are logics in which the condition (.)  is not 
satisfied. In other words, not every logic is regular. We shall now formulate 
another condition, being necessary and sufficient for the logic L to be regular. 
It is interesting because of its connection with the concept of commensur- 
ability of observables associated with the logic. 

Definition. We say that two observables x, y: B(R 1) ~ L are commensur- 
able (or simultaneously measurable), and write x +--> y, if there exist an observ- 
able z and Borel functions f ,  g: R 1 ~ R 1 such that x = f (z )  and y = g(z). 

Remark. By f (x) ,  where x is an arbitrary observable associated with L, 
is meant the observable defined by 

(f(x))(E) = x ( f - l ( E ) )  
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It can be shown [see, for example, Ramsay (1966)] that 

x ~ y iff x ( E )  ~ y (F )  for all E, F ~ B ( R  1) 

Usually just the preceding condition was taken as defining the commensur- 
ability of observables x and y. However, from the physical point of view our 
former definition seems to be more plausible. 

The following important theorem was stated by Varadarajan (1962): 
(**) For every sequence {x~}~-x of pairwise commensurable observ- 

ables there exist an observable x and Borel functionsf~: R 1 ~ R 1 
such that x~ = f~(x) ,  n = 1, 2 . . . . .  

However, Varadarajan's proof of (**) was not correct because he implicitly 
assumed property (.) for the compatibility relation ~--~; as we know [see 
counterexamples given by Pool (1963) and Ramsay (1966)] this assumption 
does not hold in an arbitrary logic. Thus the question arises: Is the condition 
(.) necessary for the validity of the theorem (**)? Alternatively, is there 
another proof of (**) that does not use property ( . )?  The answer to this 
question is given by the following theorem (Guz, 1971). 

For any logic L the following two conditions are equivalent: 
(i) L is regular. 

(ii) The theorem (**) holds in L. 
This theorem gives us the necessary and sufficient condition for the regularity 
of L. However, because of the complexity of condition (**), it seems more 
appropriate to take the regularity of the logic L as the necessary and sufficient 
condition for the validity of Varadarajan's theorem (**) in L. 
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