On the Simultaneous Verifiability of Yes-No Measurements

Wawrzyniec Guz

Institute of Physics, Gdatisk University, Gdańsk, Poland

Received July 21, 1978

The relation of simultaneous verifiability (compatibility) of yes-no measurements, introduced by G. W. Mackey for the purposes of quantum axiomatics, is investigated. The meaning of this important relation is clarified here by showing its position among all the so-called weak compatibilities defined axiomatically in the logic of propositions.

1. PRELIMINARIES, DEFINITIONS, AND NOTATION

There are three basic concepts at the foundations of any physical theory: states, observables, and yes-no measurements (called also propositions, questions, events), i.e., measurements that can give only two results, yes or no. A common belief of physicists is that every measurement of a physical quantity can be reduced to a series of yes-no measurements, and thus we may expect the structure of the set of all observables to be completely determined by the structure of the set of all yes-no measurements. This is indeed so [see, e.g., Mackey (1963)], and therefore the structure of the set of propositions (which we call the *logic of a physical system;* briefly, a *logic)* is of primary importance.

The logic of any classical system is found to be the Boolean lattice of all Borel subsets of the phase space of the system, while for a quantum mechanical system its logic is the complete ortholattice of all closed subspaces of a (separable complex) Hilbert space corresponding to the system.

For an abstract logic L of a general physical system (without considering it concretely represented) the following properties are assumed to hold (Mackey, 1963):

(L1) L is a σ -orthoposet, that is, a σ -orthocomplete orthocomplemented partially ordered set.

(L2) L is *orthomodular*, i.e., $a \le b$ (a, $b \in L$) implies $b = a \vee c$ for some $c \in L$, $c \mid a$. (We write $c \mid a$ and say that propositions c and a are *orthogonal*, if $c \le a'$ or, equivalently, $a \le c'$, where the prime denotes orthocomplementation in L. This orthogonality relation is obviously symmetric).

Having the logic L fixed, we can identify the states of the physical system with probability measures on L and the observables with σ -homomorphisms from the Borel subsets of the real line $R¹$ into L [see, e.g., Mackey (1963)].

2. A CHARACTERIZATION OF THE SIMULTANEOUS VERIFIABILITY OF PROPOSITIONS

Usually the most important manifestation of the quantum nature of microphenomena is considered the existence of such observables, which do not admit a simultaneous measurement with an arbitrary accuracy. It can be shown that this is exactly equivalent to the existence of propositions that are not simultaneously verifiable [for a precise proof, see Varadarajan (1962)], where, by definition, propositions $a, b \in L$ are said to be *simultaneously verifiable* [or *compatible,* $a \leftrightarrow b$ in symbols (Mackey, 1963)] if there exist three pairwise orthogonal propositions a_1 , b_1 , and c such that $a = a_1 \vee c$ and $b = b_1 \vee c$. This relation is obviously symmetric and reflexive. The phenomenological meaning of the so-defined relation \leftrightarrow is not clear, but it can easily be understood if we notice the following (Varadarajan, 1962):

 $a \leftrightarrow b$ iff there exist an observable x: $B(R^1) \rightarrow L$ and Borel sets

 $E, F \in B(R^1)$ such that $a = x(E)$ and $b = x(F)$

Hence, as a direct consequence, we obtain

 $a \leftrightarrow b$ implies $a \leftrightarrow b'$

The following statement may help clarify the significance of the relation \leftrightarrow [for its proof, see, e.g., Varadarajan (1962)]:

 $a \leftrightarrow b$ (a, $b \in L$) iff there exists a Boolean sublogic of L containing both a and b .

The following statements can be shown (Varadarajan, 1962):

(1) Let a, $b \in L$ and $a \leftrightarrow b$, that is

 $a=a_1 \vee c$ and $b=b_1 \vee c$

where a_1 , b_1 , and c are pairwise orthogonal. Then there exist $a \vee b$ and $a \wedge b$, and $a \wedge b = c$.

(2) Let *a*, $a_1, a_2, \ldots \in L$. If $a \leftrightarrow a_i$ for all $i = 1, 2, \ldots$ and if $\bigvee_{i=1}^{\infty} a_i$ and $\bigvee_{i=1}^{\infty} (a \land a_i)$ both exist, then $a \leftrightarrow \bigvee_{i=1}^{\infty} a_i$ and

$$
a \wedge \left(\bigvee_{i=1}^{\infty} a_i\right) = \bigvee_{i=1}^{\infty} \left(a \wedge a_i\right)
$$

Yes-No Measurements 545

The following properties of the relation \leftrightarrow are of particular importance to us (Varadarajan, 1962):

(a) \leftrightarrow is symmetric and reflexive.

(b) $a \leftrightarrow b$ implies $a \leftrightarrow b'$.

(c) $a \leq b$ implies $a \leftrightarrow b$.

(d) $a \leftrightarrow b$, $a \leftrightarrow c$, $b \perp c$ imply $a \leftrightarrow b \lor c$.

Note that (c) is a direct consequence of the orthomodularity of L , and (d) follows from (2).

Definition. Every binary relation $C \subseteq L \times L$ satisfying the preceding conditions, i.e., such that

 (i) C is symmetric and reflexive,

(ii) $a C b$ implies $a C b'$,

(iii) $a \leq b$ implies $a \, C \, b$,

(iv) $a C b$, $a C c$, $b \perp c$ imply $a C b \vee c$,

will be called the *weak compatibility* in L.

The justification for such a name for C is contained in the following statement.

> *Theorem 1.* The relation \leftrightarrow is the strongest one in the family of all relations C with properties (i)–(iv), that is

> > $a \leftrightarrow b$ implies $a \, C \, b$

In other words, $\leftrightarrow \subseteq C$ for any relation C satisfying the conditions (i) – (iv) .

Proof. Suppose that $a \leftrightarrow b$ ($a, b \in L$). Then $a = a_1 \vee c$ and $b = b_1 \vee c$, where a_1 , b_1 , and c are mutually orthogonal. Hence $b_1 \perp a_1 \vee c = a$, and so b_1 C a by (iii) and (ii). But $c \le a$ implies c C a by (iii), and therefore by (iv) and (i) one finds a C $b_1 \vee c = b$. This proves that $\leftrightarrow \subseteq C$ indeed.

> *Corollary.* Let $\mathscr C$ denote the family of all weak compatibilities in L . Then

$$
\leftrightarrow \, = \bigcap_{C \, \in \, \mathscr{C}} C
$$

Definition. If the weak compatibility $C \subseteq L \times L$ has the additional property

$$
a C b \Rightarrow
$$
 there exists $a \vee b$ in L

(or the equivalent dual property $a C b \Rightarrow$ there exists $a \wedge b$ in L), and if instead of (iv) the relation C satisfies the stronger condition

(iv') $a\ C\ b, a\ C\ c, b\ C\ c \Rightarrow a\ C\ b\ \vee\ c\ and\ a\ \wedge\ (b\ \vee\ c) = (a\ \wedge\ b)\ \vee\ (a\ \wedge\ c)$ or the equivalent dual condition, then we shall say that C is *regular.*

It is well known (Pool, 1963; Ramsay, 1966) that not every logic admits a regular weak compatibility on it. On the other hand, in any lattice logic the

relation \leftrightarrow is regular. This follows easily from (1) and (2). So the existence of a regular weak compatibility in the logic L may be considered a "regularity" condition for L, and thus the following definition can be accepted.

Definition. The logic L is said to be *regular* if a regular weak compatibility may be defined in L.

> *Theorem 2.* If a weak compatibility $C \subseteq L \times L$ is regular, then $C = \leftrightarrow$. Thus there exists at most one regular weak compatibility inL.

The proof of this theorem is preceded by two lemmas.

Lemma 1. Let C be a regular weak compatibility in L, and let M be a nonempty subset of L . Then M is a Boolean lattice, whenever the following conditions are satisfied:

- (a) For any pair $a, b \in M$ one has $a \in b$ and $a \vee b \in M$.
- (b) $a \in M$ implies $a' \in M$.

Proof. From (a) and (b) it follows readily that $a \wedge b \in M$ for all $a, b \in M$ and that 0 and 1 are in M . Thus M becomes an orthocomplemented lattice, and it remains to be shown that M is distributive. But the distributivity of M is guaranteed by the property (iv') of the relation C. Indeed, owing to (a) and (iv') we have $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ for all $a, b, c \in M$, which, by (b), implies the dual identity $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$, all $a, b, c \in M$.

> *Lemma 2.* Let C be a regular weak compatibility in the logic L. Then every subset of L consisting of pairwise weakly compatible propositions is contained in some Boolean sublattice of L .

Proof. Consider the family $\mathscr A$ of all subsets $A \subseteq L$ consisting of mutually weakly compatible elements of L (that is, such subsets $A \subseteq L$ for which a C b for any pair a, $b \in A$), partially ordered by the set inclusion. If $\{A_t\}_{t\in T}$ is an arbitrary chain of elements from $\mathscr A$, then obviously $\bigcup_{t\in T} A_t$ belongs also to $\mathscr A$. Of course, $\bigcup_{t \in T} A_t$ is an upper bound for the chain $\{A_t\}_{t \in T}$; hence by Zorn's lemma every subset $A \in \mathcal{A}$ is contained in some maximal set $M \in \mathcal{A}$ for which

- (i) a C b for all a, $b \in M$ (since $M \in \mathcal{A}$).
- (ii) $a \in M$ implies $a' \in M$ (by the maximality of M).
- (iii) $a \vee b \in M$ for all $a, b \in M$ (by the maximality of M and the regularity of C).

All conditions of Lemma 1 are satisfied, and hence M is a Boolean sublattice of L.

The proof of the theorem is now immediate: $a \, C \, b$ implies $a, b \in M$ for some Boolean sublattice $M \subseteq L$ by Lemma 2; hence [see, e.g., Varadarajan (1962)] $a \leftrightarrow b$. We thus have shown that $C \subseteq \leftrightarrow$, which together with the inverse inclusion proved in Theorem 1 leads to $C = \leftrightarrow$, as claimed.

Yes-No Measurements 547

Thus the regularity of an arbitrary weak compatibility $C \subseteq L \times L$ implies the regularity of the relation \leftrightarrow .

Note, by the way, the following fact:

Theorem 3. The relation \leftrightarrow is regular if and only if it satisfies the first part of condition (iv'), that is, if the following property holds for \leftrightarrow :

(*) For any triple a, b, c of mutually compatible propositions one has $a \leftrightarrow b \lor c$.

Proof. One needs to show only the "if" part of the theorem. Suppose thus that condition (*) is satisfied by \leftrightarrow . Hence, by the condition dual to (*) [which is, of course, equivalent to (*)], we get

$$
a \leftrightarrow b, a \leftrightarrow c, b \leftrightarrow c \Rightarrow c \leftrightarrow a \land b
$$

Hence

 $a \wedge b \leftrightarrow a \wedge c$

since $a \wedge b \leq a$ leads to $a \wedge b \leftrightarrow a$ [see, e.g., Guz (1971)], and therefore we conclude [see (1)] that there exists $(a \wedge b) \vee (a \wedge c)$.

Since $a \leftrightarrow b \lor c$ by (*), there exists, by (1), $a \land (b \lor c)$. It now remains to appeal to (2) in order to find that

$$
a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)
$$

which is the second part of condition (iv'). The proof of the theorem is thus complete.

A direct consequence of Theorem 3 is the following result.

Corollary. The logic L is regular if and only if the compatibility relation possesses the property $(*)$ or the equivalent property dual \mathfrak{to} $(*)$.

Examples, which have been found by Pool (1963) and independently by Ramsay (1966), show that there are logics in which the condition $(*)$ is not satisfied. In other words, not every logic is regular. We shall now formulate another condition, being necessary and sufficient for the logic L to be regular. It is interesting because of its connection with the concept of commensurability of observables associated with the logic.

Definition. We say that two observables x, y: $B(R^1) \rightarrow L$ are *commensurable* (or *simultaneously measurable*), and write $x \leftrightarrow y$, if there exist an observable z and Borel functions f, $g: R^1 \to R^1$ such that $x = f(z)$ and $y = g(z)$.

Remark. By $f(x)$, where x is an arbitrary observable associated with L, is meant the observable defined by

$$
(f(x))(E) = x(f^{-1}(E))
$$

It can be shown [see, for example, Ramsay (1966)] that

 $x \leftrightarrow y$ iff $x(E) \leftrightarrow y(F)$ for all $E, F \in B(R^1)$

Usually just the preceding condition was taken as defining the commensurability of observables x and y . However, from the physical point of view our former definition seems to be more plausible.

The following important theorem was stated by Varadarajan (1962):

(**) For every sequence $\{x_n\}_{n=1}^{\infty}$ of pairwise commensurable observables there exist an observable x and Borel functions $f_n: R^1 \to R^1$ such that $x_n = f_n(x)$, $n = 1, 2, ...$

However, Varadarajan's proof of (**) was not correct because he implicitly assumed property (*) for the compatibility relation \leftrightarrow ; as we know [see counterexamples given by Pool (1963) and Ramsay (1966)] this assumption does not hold in an arbitrary logic. Thus the question arises: Is the condition (*) necessary for the validity of the theorem $(**)$? Alternatively, is there another proof of $(**)$ that does not use property $(*)$? The answer to this question is given by the following theorem (Guz, 1971).

For any logic L the following two conditions are equivalent:

- (i) L is regular.
- (ii) The theorem $(**)$ holds in L .

This theorem gives us the necessary and sufficient condition for the regularity of L. However, because of the complexity of condition (**), it seems more appropriate to take the regularity of the logic L as the necessary and sufficient condition for the validity of Varadarajan's theorem $(**)$ in L .

REFERENCES

Guz, W. (1971). *Rep. Math. Phys.,* 2, 53.

- Mackey, G. W. (1963). *The Mathematical Foundations of Quantum Mechanics, W. A.* Benjamin, New York.
- Pool, J. C. T. (1963). "Simultaneous Observability and the Logic of Quantum Mechanics," Ph.D. Thesis, Iowa University.

Ramsay, A. J. (1966). *J. Math. Mech.,* 15, 227.

Varadarajan, V. S. (1962). *Comm. Pure Appl. Math.,* 15, 189; correction, 18 (1965).